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Cylindrical tank of fluid oscillating about a 
state of steady rotation 
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(Received 19 May 1969) 

A cylindrical tank, full of fluid, is oscillating with frequency o and rotating with 
angular velocity SZ about its axis of symmetry. It is assumed that the amplitude 
of oscillation, 8, is small and the viscosity is low such that boundary layers exist. 
Analysis shows that the unsteady boundary layer is of thickness [.I( 1 - 2SZ/w)]4 
on the top and bottom plates and of thickness €4 on the side walls, where E = v/L20. 
The interior unsteady flow shows source-like behaviour at  the corners. The 
steady flow field is caused by the steady component of the non-linear centrifugal 
forces coupled with an induced steady rotation of the interior. This rotation, of 
order S2w, is prograde when SZ/w < 0.118 and retrograde otherwise. Maximum 
retrograde rotation occurs at sZ/w = 0.5. A steady boundary layer of thickness 
[e/( 1 - ZSZ/w)]* exists on the top and bottom plates, and of thicknesses 

€4, (v/L2SZ)), (v/L2Q)) 

on the side walls. Experimental measurements of the interior induced steady 
rotation compare well with theory. 

1. Introduction 
Oscillatory disturbances in a rotating fluid may be produced from primarily 

inviscid excitations, or from purely viscous effects. In the former case normal 
oscillations of the boundary push the fluid around, such as from a precessing 
non-spherical container, or from some oscillatory object inside the fluid. In  the 
latter case an oscillating Ekman layer affects the interior by producing a time- 
dependent normal flux. It is well known, from linear theory, that inertial waves 
in the interior may be excited if the frequency of oscillation is smaller than twice 
the rotation rate of the fluid. See, for instance, Greenspan (1968). But are non- 
linear effects important for small amplitude disturbances ? 

For spin-up, Greenspan & Weinbaum (1965) showed tlat non-linear effects 
are unimportant. For small, steady precession of a spherical container, Busse 
(1968) showed that non-linear effects can produce a secondary retrograde motion 
of the interior, which is significant. In  this paper we shall investigate the non- 
linear effects due only to small oscillatory disturbances. 

Since inviscid excitation has secondary importance in producing non-linearities 
(Greenspan 1969), we shall study the case where purely viscous excitation is 

t Present a.ddress : Department of Mathematics, Michigan State University, East 
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dominant, i.e. torsional oscillation of a symmetric container about a state of 
steady rotation. To be specific, let us take a cylindrical tank, full of liquid of 
viscosity v, of height L, radius EL, and rotating about its axis with the angular 
velocity C2 + a eiwt, where a is a constant of unity, fi and w are the amplitude and 
frequency of oscillation respectively. 

2. Analysis 
Let us take a co-ordinate system rotating with angular velocity Slk, where k 

is a unit vector. Then we separate the variables in the Navier-Stokes equations 
into a steady part denoted by a bar and an unsteady part denoted by a tilde: 

g' = q' + 4') 
p' = pf +PI ,  

where g' is the velocity vector relative to the rotating system, and p' is the 
pressure plus the centrifugal potential due to 0. Then we normalize the lengths 
by L, the time by l/w, p' bypfi2L2, 8' bypi%oL2, the unsteady induced velocity 4' 
by a L ,  and the steady induced velocity 4' by fiL, where the unknown magnitude 
a shall be determined. 

The Navier-Stokes equations then separate into an unsteady equation and 
a steady equation: 

4t+(: ) (q .Vq+q.Vij )+  = -Vp-sVxVxQ,  (2.1) 

( ~ ) ' ( ~ . V i j ) + ( ~ f ) + B ( ~ )  (2kx  q) = -Vp- r;;) - v x v x q. (2.2) 

- 

- 
Here the unprimed quantities are of order unity, ,!I = Sl/w, E = v/L2w, and ( 
( ) denote the unsteady, steady part of the product respectively. 

amplitude of oscillation is small such that 

), 

We assume the Stokes layer is small such that si < 1. We also assume the 

a / w  < €* < 1. 

Equation (2.1) shows that the unsteady velocity 4 decays within a distance of 
st from the boundary. The prime motive force in (2.2) is the steady part of the 
Reynolds stress (q7q) which also decays in d. To balance this force in the same 
boundary-layer thickness, the induced velocity must have a magnitude such 
that Silo = (fi lw)'  < E < 1.  

Thus for the first two orders, the unsteady equation reduces to a linear problem, 
which, written in cylindrical polar co-ordinates becomes 

(2.3) 

(2.4) 

(2.6) 

c,-2pa = -&+s 
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The continuity equation is 
(rtZ),.+ ( Y G ) ~  = 0. 

Here u, v, w are the velocity components in the directions r,  8, x respectively. The 
boundary conditions are Q = G = 0, 5 = reit  on top and bottom boundaries at  
z = 0 , l ;  tZ = G = 0, v" = aeit on the side walls at r = a. 

The bottom boundary-layer equations are obtained by stretching as follows 

z = €47, Q = qo+€4q1+ ..., 
Equations (2.3)-(2.6) reduce to 

cot - 2/3c0 = -@or + Go,,, (2.8) 

cot + 2pG0 = co,,, (2.9) 
8 0 ,  = 0, (2.10) 

(rGo),.+ @Go), = 0. (2.11) 

Solving these equations we obtain for the leading orders 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

-(1+2,0)t---7 l + i  1 , (2.16) 
J2 

where 

(2.17) 

The top sign is used when /3 < $ and the bottom sign is used when /3 > $. We 
temporarily exclude the ,8 = J case. The solutions show the boundary layer is 
actually a combination of Stokes and Ekman layers. Its thickness is the Stokes 
thickness €3 for small /3 and the Ekman thickness (~ / /3 ) *  = E3 for large /3. The 
top boundary layer has a similar construction. 

The zeroth-order unsteady velocities in the interior are found to be zero. 
From (2.15) there is a mass flux of order €4 into the interior. It is found that the 
side walls simply cannot support such large mass flux. To conserve mass, an 
unsteady source must exist near the corner of the tank. The first-order equation 

for the interior is [(l /r) (r$~, . ] , .+ (1 - 4/32) = 0, (2.18) 
q = -2/3$1,, (2.19) 

where 9, related to the conventional stream function, is defined by 
u = $2, w = - ( l /r)  (r$),.. (2.20) 

The boundary conditions are that 

0 < r < a, z = 0, G1 = -+Areit, 
z = - 1  2,  $1 = 0, 

r =  a, $, = 0, 

r = 0, $1 = 0, (2.21) 
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where 

The solution to (2.18) plus the boundary conditions (2.21) can be obtained by 
separation of variables and a Fourier-Bessel expansion in r .  The result is 

[( 1 + 2/3)-4 T (1 - 2P)-3]. 
l + i  A = - - -  
4 2  

where Cm is the mth positive zero of the Bessel function J1. The velocity com- 

and bottom of the container. The vertical velocity 
a side-wall boundary layer of order €2 thickness. 

On the side walls the variables are stretched as 

I 

r = a - etc, 
.i7. = €C2+ ..., 
v" = Go+. . . ,  

?z = €tal+ ..., 
fi = €2fil+ .... 

Equations (2.3)-(2.6) reduce to 

- 2Pv"O = fi1Q 

is an oscillatory azimuthal velocity in the interior, caused by the interaction 
of rotation with the oscillatory flux from the Ekman-Stokes layers near the top 

is to be brought to  rest in 

follows 

( 2 . 2 5 )  

iv", = f iOC5 ,  

ii61 = - p,, + G1g, 

wlz = %g- 
- 

The boundary conditions are 
5 = 0, Go = a e i t ,  ?zl = 0, 

c+co, v",+o, G'l+qlr=o.  

The solution is go = a e i t  exp [ - c] , 

(2.26) 

(2.27) 
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There also exists a corner region, of dimensions €4 by [ ~ / ( 1 -  2/3)34, where the 
mass flux of €4 is redirected. This corner solution is difficult to obtain explicitly. 
The unsteady flow field is schematically shown in figure 1. 

FIGURE 1. Schematic diagram of the unsteady flow field. 
, primary circulation ; -- - , secondary circulation. 

The steady flow induced by the unsteady velocities is strictly a non-linear 
phenomena. To second order, (2 .2 )  becomes 

(2.30) 

- iu, = (CGr + GGz), (2 .31)  

(rU),+ (rw),, = 0.  (2 .32)  

The right-hand side represents the steady part of the Reynolds stress, mainly 
centrifugal forces, which decay exponentially to zero for the fist two orders 
outside the boundary layer of order €4. Thus the interior governing equations are 

- 2 p a  = 0 (2 .33)  
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If ~3 += 0, (2.33) satisfies the Taylor-Proudman condition that, 
- u = 0, (2.34) 

V = V ( r ) ,  (2.35) 

= W ( r )  E 0, by symmetry. (2.36) 

From (2.7) and (2.29)-(2.32) the bottom boundary-layer equations are 

(2.38) 

= 0. (2.39) 

Here K ( r )  is the steady azimuthal velocity of the interior, to be determined later, 
and I(?) = W?) + B*(r)l, 

J ( r )  = W r )  + C*(r)I, 

where the * denote the complex conjugate, and we bear in mind that 

(1  - 2/3)4* = 5 (1 - 2p)k 

The simplest way to solve for the steady flow is to define 

4, = Go - iv,. 
Then (2.37)-(2.38) reduce to 

q507q + zip40 = r(1-  iJ) + 2/3Fo(r). 

The boundary conditions are 

7 = 0, Re#, = 0, Im#, = 0. 

After some algebra the solution is found to be 

(2.41) 

(2.42) 

(2.43) 
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where a1 = - 2-t[(l -i) (1 + 2P)+ f (1  +i )  (1 - 2/3)1], 
a2 = -24(1+2/3)4 

a3 = - 2q1+  2p/s, 

a4 = -__ (1+2/3)3, 
J2 

1 - i  

- l + i  
a5= +--(1-2/3)4, 

4 2  J 
K ,  = (if 

2( 1 - 4 p ) 9  

Similar to (2 .20)  we can define a steady stream function as follows 

(2.45) 

(2.46) 

(2.47) 

A t  infinity (2.47) reduces to 

where 
5 

n = l  
!2'=-Re C K ,  (2.49) 

For boundary layers not close to the side walls, (2.36) implies the interior cannot 
take any mass flux. Equating (2.48) to zero, we find the interior fluid rotates 
rigidly as a whole 

Q r )  = r U .  (2.50) 

The angular velocity a' is plotted in figure 2. Taking limits on (2.49) we find 
@-to, s/'++; /3+&, a'+ - L ( 2 9 4 2 - 3 0 ) ;  34  /3+co, !2'-+-3/(20/3). The stream 
function for the bottom boundary layer is then 

= t$r (  C 5 ReKn[exp(an")+l+ie~p[- ( l - i ) /3~ ,?#l~]  

n= 1 an 2/34 

On the side walls the steady azimuthal velocity ro(r) must be brought to  rest 
in an E i  = (e//3)& layer. This induces a mass flux that can only be balanced in 
an E* layer. For the E i  layer the variables are stretched as follows 

r = a-E*x, 

D = vo+ .... 
F; = EFPl+ ..., 
- -  

(2 .52 )  
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Equations (2.20), ( 2.29)-( 2.32) give 
- 

(2.53) i VOS = 07 

The boundary conditions are - 

- 
voxx = 2TlZ. 

2 = Q ,  Y,=O,  1 
from (2.48), x = 0, Tl = - &[Go(a) -ail'], 

1 x = 0, Eo = 0, 
1 (2.54) 

from (2.50), x - f  00, Tj0-+aQf. 

0.3 
(f 0.25) 

0.2 

0.1 

0 

R' -0.1 

- 0.2 

-0.3 

- 0.4 
(-0.456) 

- 0.5 

FIGURE 2. Induced steady rotation. - , theory; 0, w = 206 rev/min, 6 = 15.5"; 
A,  w = 109rev/min, 6 = 15O; 0, w = 71 revlmin, 6 = 16". 

The solution is 3 = aQf(l-exp[-J2x])+.. . ,  (2.55) 

(2.56) = - EBaQ'exp [ - , / 2  x] (z  - 8)  + . . . . 

For the E i  layer we set r = a - E i t ,  
V = Eh,+ ..., 

T = EiTl+ .... 
The governing equations are 

%gg + 2% = 0, 

?&- 2Y, = 0, 
- 

together with the boundary conditions 

2 = * ,  T1=0, 
2 = 0, Tl = $an', 
g = 0, v1 = 0) Tl = 0, 

E-. 00, T1+- aQf(2 - 4). 

- 

The work involved is tedious but straightforward. We obtain 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

+ (3  - ,/ 3 i) exp [&{ - (4nm)f) (1 - ,/ 3i) <])sinnn( 1 - 22) - aQf(x - &) . (2.61) 1 
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The velocity El again induces an EQ azimuthal velocity into the E* layer, but this 
is of lesser importance. 

Close to the wall, there is an sa layer where the right-hand side of (2.29)-(2.31) 
is important. These terms will change the steady radial pressure distribution. 
The velocities will not be affected except in the corner region of dimensions 
€4 by [e/( 1 - 2/?)]4. 

Plane of symmetry 

Rigid 
rotation 

Schematic diagram of the steady flow field. - , bottom boundary-layer 
circulation; - - -, side wall boundary-layer circulation. 

Figure 3 shows the various boundary-layer thicknesses encountered in the 
steady flow. The scale of this figure is drawn such that /? is of order unity or lower 
and not close to $. Other distributions of the regions are possible when /3 is large 
or close to $, e.g. 

The basic mechanism for steady flow, however, is similar. 

€4 (€/m 01 [ E l U -  2P)P (€//?)*. 

3. Experiments 
Experiments were done to detect the steady rotation of the interior due to 

non-linear effects caused by oscillation. A cylindrical tank, of 10% in. diameter 
and 12in. height was filled with water at room temperature. A free-supported 
vaned shaft was placed along the axis of the cylinder. Near the tip of the shaft, 
which protruded out through a hole on the cylinder, was attached a small slitted 
disk. A photocell sandwiches part of the disk and records its angular velocity. 
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The tank of fluid was able to oscillate through a crank-and-rocker mechanism 
driven by a motor. The amplitude of oscillation 6, was about 15.5". The whole 
apparatus rested on a variable speed turntable (figure 4, plate 1). 

The turntable was run a t  a fixed angular velocity while the cylinder was made 
to  oscillate. After all transients died out, the steady induced angular velocity 
of the interior was picked up by the photocell and recorded. The results show 
good agreement with theory calculated from (2.50). See figure 2. 

The magnitude of the induced steady flow is of order f i z /w  = t s 2 w ;  it is pro- 
portional to  the frequency of oscillation w and the square of the amplitude of 
oscillation S. The rotation is prograde for p < 0.118 and retrograde for p > 0.118. 
For p near zero, theory shows Q' approach the maximum prograde value of 
+ 0.25, while experimental values rise sharply from zero t o  the theoretical value. 
This is because in the experiments the rotation rate is too slow for an effective 
Taylor column to establish. At p = + theory shows the induced rotation ap- 
proaches the limit Q' = - 0.456 which is the maximum retrograde angular 
velocity. It seems, as far as the induced steady motion is concerned, consideration 
of the p M + case only amounts to  rounding the cusp there, which is hardly worth 
the effort of introducing thenecessary additional non-linear terms into (2.8)-(2.9). 

For p > 4. experiments show greater scatter as compared with those of p < +. 
Numerous inviscid inertial waves may be excited in this range. The inertial 
oscillations, though unsteady, may produce a non-linear higher order steady 
component by interacting with the vanes in the tank. This effect would be 
minimized if the vanes are made perfectly symmetric. Nevertheless, we see that 
the general trend of experimental values follows the theoretical prediction. 

4. Discussions 
Benny (1965) was first to  consider the Ekman-Stokes layer by studying an 

infinite disk which is rotating and oscillating in its own plane. He found that on 
the disk the boundary-layer thickness arises from the combination of the Ekman 
thickness and the Stokes thickness: [e / (  1 5 2/3)]4. Benny further went on to  show, 
due to  non-linear centrifugal effects, that in the limit of p - + O  there is a weak 
steady influx proportional to p into the boundary layer, and constant outfluxes 
occur when p-. 

I n  our case, the presence of a similar symmetric top disk prevents any flux 
from leaving the boundary layer into the interior. The interior thus adjusts itself 
to  force a much stronger Ekman flux which just balances the flux due to non- 
linear steady streaming caused by centrifugal forces. 

Figure 5 shows the steady circulation of the bottom boundary layer calculated 
from (2.51). For small p the horizontal velocity reverses once, while for large p, 
there are two reversals in velocity. Conceptually, let us separate the Stokes layer 
from the Ekman layer. Asp-+ 0 the Ekman thickness ( v / Q ) i  is much larger than 
the Stokes thickness (v/w)* which is closer to  the boundary. The fluid in the 
Stokes layer is being thrown out due to  centrifugal forces. Since it is bounded 
at the bottom by the solid plate, to conserve mass, fluid must be drawn from the 
Ekman layer above. To balance this downward flux, the interior must attain 

and p-. 00. Unfortunately, no details were given. 
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a prograde motion. Therefore the fluid flows radially inwards in the Ekman layer 
and radially outward in the Stokes layer. 

On the other hand, for large ,8 we can imagine a thick Stokes layer which is 
lying on top of a thinner Ekman layer. Again inside the Stokes layer fluid is 
being thrown out. Since it is bounded from above by the interior, the mass flux 
must be replenished from below. The interior induced rotation, which only 

0 '  I i I I 1 
0.2 0.4 0.6 0 8  1 .o 

r 

(a )  
f = O  - 

I - 
6 

4 

v 
2 

0 
0.2 0:4 0.6 

r 

( b )  

FIGURE 5. Steady circulations of the Ekman-Stokes layer. (a)  /? = 0.04, (b )  p = 0.9. 

affects the Ekman layer, must be retrograde in order to bring the upward flux 
to zero on the solid plate. There exists, however, a third 'layer' very near the 
oscillating plate where the outward centrifugal force reaches its maximum but 
the inward pressure due to the Ekman layer drops to zero. Thus we expect 
another outward flux very near the boundary. 

For intermediate values of ,8 the induced interior rotation depends on the 
delicate balance of the Ekman and the Stokes layers which is now of same order 
and highly coupled. What we can say is at p w 8 the unsteady boundary-layer 
thickness reaches a maximum. The centrifugal force and thus the inducedinterior 
rotation would also reach a maximum for a fixed amplitude of oscillation. 



592 C- Y. Wang 

The side walls only affect the unsteady flow field in the interior and have little 
effect on the induced steady rotation. For other geometries such as a sphere, we 
expect the steady rotation to vary continuously with radius. As the slope of the 
container gets steeper, the rotation gradually reaches a maximum retrograde 
motion at the ‘critical layer’, where, according to our theory, only aJinite jump 
in the derivative of rotation rate is observed. This is quite different from Busse’s 
work on precession, where the rotation rate itself goes through a dipole singularity. 

Of less importance is the induced unsteady flow of frequency 313 which is of 
the same order as the induced steady flow. Also we shall not go into the important 
resonant frequencies due to linear excitation of the inertial waves when p > a. 
These have been investigated by Fultz (1959) for the case of a cylinder, Green- 
span (1964), Aldridge & Toomre (1969) for the case of a sphere. Both theoretical 
and experimental determinations of the eigenvalues agree very well. 
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number NONR 233(76). The author is grateful to Professor L. N. Howard and 
Professor W. V. R. Malkus for their many helpful discussions on both theory and 
experiment. The permission to use the facilities of the Geophysics Laboratory 
of the Institute of Geophysics and Planetary Physics at  UCLA was also 
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FIGURE 4. The experimental set up. 
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